Reductive mono- and diallylation of the bis(pyridine)dihydropyridyllithium dimer by triallylborane

Yu. N. Bubnov, a,b * E. V. Klimkina, Z. A. Starikova, and A. V. Ignatenko

aN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,
47 Leninsky prosp., 119991 Moscow, Russian Federation.
Fax: +7 (095) 135 5328. E-mail: bor@cacr.ioc.ac.ru
bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences,
28 ul. Vavilova, 119991 Moscow, Russian Federation.
Fax: +7 (095) 135 5085. E-mail: dir@ineos.ac.ru

Reductive allylation of the bis(pyridine)dihydropyridyllithium dimer containing the 1,2- and 1,4-dihydropyridine fragments by triallylborane results mainly in *trans*- and *cis*-2,6-diallylpiperidines (60—85%), their ratio depending on the nature of the solvent. The minor reactions products are 2-allyl-1,2,3,6-tetrahydropyridine and 4,10-diallyl-3,9-diazatricyclo[6.2.2.0^{2,7}]dodecane. The unexpected formation of the latter is due to hetero-Diels—Alder condensation of intermediate products formed in the allylboration of dihydropyridines. The stereochemistry of *trans*- and *cis*-2,6-diallylpiperidines was determined from the ¹H and ¹³C NMR spectra of the respective *N*,*N*-dimethylpiperidinium iodides. The structure of 4,10-diallyl-3,9-diazatricyclo[6.2.2.0^{2,7}]dodecane dipicrate was established by X-ray diffraction analysis.

Key words: pyridine, reaction with butyllithium, bis(pyridine)dihydropyridyllithium dimer; allylboration; 2-allyl-1,2,3,6-tetrahydropyridine; *trans*- and *cis*-2,6-diallylpiperidines, N,N-dimethylpiperidinium iodides, stereochemistry; 4,10-diallyl-3,9-diazatricyclo[6.2.2.0^{2,7}]dodecane, the hetero-Diels—Alder reaction, X-ray diffraction analysis.

In 1930, it was shown¹ for the first time that organolithium compounds react with pyridine to give 1,2-addition products 1, whose aromatization results in 2-R-pyridines (Scheme 1).

Scheme 1

$$\begin{array}{c|c}
 & RLi \\
 & N \\
 & R
\end{array}$$

$$\begin{array}{c|c}
 & [O] \\
 & N \\
 & R
\end{array}$$

Later, this reaction was used by many chemists to obtain 2-substituted pyridines. However, it has been recently found that this process (substitution of the α -hydrogen atom) proceeds through intermediate adduct of the type 3 (Scheme 2). When treated with 4 equiv. of pyridine, the latter gave 2-butylpyridine 2a and an air-stable bis(pyridine)dihydropyridyllithium dimer (4), which contains the 1,2- and 1,4-dihydropyridyllithium fragments (in the ratio 1:1) and four pyridine molecules.

Formally, the reaction involving adduct 3 includes the reduction of pyridine with lithium hydride generated in the formation of 2-butylpyridine. However, lithium

Scheme 2

hydride has not been detected in the reaction products. The data obtained⁵ indicate that 2-alkylpyridine results

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1032-1037, June, 2001.

Scheme 3

from the reaction of adduct **3** with pyridine. These data also explain the formation of 2-alkylpyridines as byproducts in the synthesis of *trans*-2-allyl-6-R-1,2,3,6-tetrahydropyridines from pyridine, RLi, and triallylborane. ⁶

Both dihydropyridine fragments of dimer **4** are attractive objects for the reductive allylboration studied by us earlier.^{6,7} We believed that monoallylated compound **5** can be obtained by the reductive allylation of complex **4** (Scheme 3) and further transformed into 2-propylpiperidine (the alkaloid coniine).

However, it turned out that consecutive treatment of complex **4** with triallylborane, methanol, and alkali (one-pot procedure) gives a mixture of the allylation products, namely, 2-allyl-1,2,3,6-tetrahydropyridine **5**, *trans*- and *cis*-2,6-diallylpiperidines (**6** and **7**, respectively), tricyclic compound **8a**, and probably its isomer **8b** (see Scheme 3).

Solid complex **4** (prepared from pyridine and n-butyllithium according to the known procedure⁵) was initially washed with hexane to separate 2-butylpyridine. Then, a solvent (THF or ether) was added. The reaction mixture was cooled to -40 °C, and triallylborane and methanol were added. The resulting aminoboranes were deboronated with 20% NaOH.

The ratio of products 5-8 depends on the solvent used (Table 1).

Solvent	Y (%)*				
	5	6	7	8a	8b
THF	15	35	25	20	~3
Et ₂ O	10	50	35	4	<1

* The yield of the final products (Y) was determined from the ¹³C NMR spectra.

A mixture of the reaction products was distilled and chromatographed to give individual amine 5, trans-piperidine 6, and cis-piperidine 7. A mixture of tricyclic compounds 8a and 8b purified by chromatography was treated with picric acid. Recrystallization from ethanol gave individual bispicrate 8a • 2Pic.

To determine the configuration of diallylpiperidines 6 and 7, we synthesized methiodides of the correspond-

Scheme 4

ing N-methyl derivatives **9** (71%) and **10** (67%) (Scheme 4).

In salt 9, both methyl groups are equivalent, giving one signal in both ${}^{1}H$ (δ 3.17, δ H) and ${}^{13}C$ NMR spectra (δ 48.85). A similar spectral pattern was observed earlier for N,N-dimethyl-trans-2,6-dimethylpiperidinium iodide⁸ and N, N-dimethyl-trans-2,6-dipropylpiperidinium iodide.6 These data indicate unambiguously that the allyl groups in amine 6 are trans-arranged. The methyl groups in salt 10 are nonequivalent, producing two singlets at δ 2.56 and 3.12 in the ¹H NMR spectrum and two signals at δ 37.66 and 49.04 in the ¹³C NMR spectrum, which confirms the cis-arrangement of the substituents in piperidine 7. A similar pattern was observed earlier for cis-1,1,2,6-tetramethylpiperidinium iodide8 and cis-1,1-dimethyl-2,6dipropylpiperidinium iodide. The signals in the NMR spectra of compound 5 were assigned using ¹H-¹H COSY-45 spectra.

Amines 5—7 were converted into hydrochlorides 5—7•HCl. The possible mechanism for the formation of compounds 5—7 is shown in Scheme 5.

The reaction of complex 4 with triallylborane yields a mixture of two enamino complexes 11a,b with differ-

ent positions of the double bonds in the ring. Methanolysis of these complexes (cleavage of the B—N bond) is accompanied by the allyl-type rearrangement to give a mixture of imino adducts **12a,b**. Rapid allylboration of their C=N bonds results in monoallylated aminoborane **13** and enaminoborane **14**. When treated with metha-

nol, the latter gives a new imino complex 15, which is transformed, through a six-membered transition state, into aminoboranes 16 and 17. Subsequent alcoholysis of aminoboranes 13, 16, and 17 affords monoallylated 3-piperideine 5 and two diallylated piperidines 6 and 7.

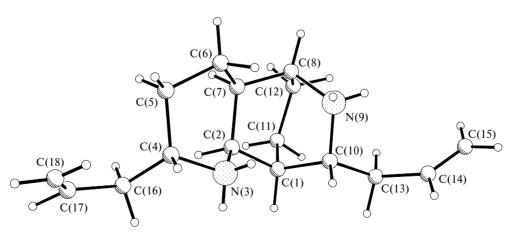


Fig. 1. Structure of the dication in compound 8a · 2Pic.

$$C(18)$$
 $C(5)$ $C(6)$ $C(4)$ $C(4)$ $C(4)$ $C(4)$ $C(4)$ $C(14)$ $C(17)$ $C(16)$ $C(16)$ $C(16)$ $C(17)$ $C(18)$ $C(18)$ $C(19)$ $C(19)$ $C(11)$ $C(11)$

Fig. 2. General view of dication 8a of picrate 8a · 2Pic (the hydrogen atoms are not displayed).

The structure of tricyclic compound **8a** (4,10-diallyl-3,9-diazatricyclo[6.2.2.0^{2,7}]dodecane) was determined by the X-ray diffraction analysis of its dipicrate (Figs. 1 and 2).

Crystal **8a · 2Pic** is composed of the tricyclic dication and two picrate anions. In addition, the structure contains a disordered molecule of a solvent (hexane).

The dication is built from the N(3)C(4)C(5)C(6)C(7)C(2) and N(9)C(10)C(1)C(2)C(7)C(8) piperidine heterocycles fused along the C(2)-C(7) bond. Each heterocycle has a boat conformation. In the former ring, the C(2)C(4)C(5)C(7) atoms are coplanar (plane 1) (the

Scheme 6

standard deviation is ± 0.087 Å), while the N(3) and C(6) atoms deviate from this plane by 0.650(3) Å. In the latter ring, the C(2)C(7)N(9)C(10) atoms are coplanar (plane 2) (the standard deviation is ± 0.063 Å), while the C(1) and C(8) atoms deviate from this plane by 0.690(3) Å. Planes *I* and *2* make a dihedral angle of $55.3(1)^{\circ}$ (see Fig. 2).

The C(16)C(17)C(18) allyl group is pseudoaxial relative to the N(3)C(4)C(5)C(6)C(7)C(2) piperidine ring, while the C(13)C(14)C(15) allyl group is in the pseudoequatorial position relative to the N(9)C(10)C(1)C(2)C(7)C(8) ring. The orientation of these allyl groups is characterized by the following torsion angles:

```
N(3)-C(4)-C(16)-C(17) 157.5(2)°,
```

C(1)-C(10)-C(13)-C(14) 174.1(2)°,

 $C(4)-C(16)-C(17)-C(18) 10.9(4)^{\circ}$

 $N(9)-C(10)-C(13)-C(14) 64.3(3)^{\circ}$

 $C(5)-C(4)-C(16)-C(17) 80.4(4)^{\circ}$,

C(10)-C(13)-C(14)-C(15) 119.4(4)°.

The cations and anions in molecule **8a · 2Pic** are held together by hydrogen bonds involving the protonated N atoms and the deprotonated O atoms of picrate: N(3)—H(31)O(1) (HO 2.02(3) Å), N(3)—H(32)O(1) (HO 1.86(3) Å), N(9)—H(92)O(1) (HO 1.88(3) Å). One of the nitro groups of the anion is also involved in hydrogen bonding (N(9)—H(91)O(7) (HO 2.24(3) Å)).

The signals in the ¹H NMR spectra of picrate **8a · 2Pic** were assigned using ¹H—¹H COSY spectra (see Experimental).

The formation of compounds **8a**,**b** can be explained by the hetero-Diels—Alder condensation of imino complex **12a** (diene component) with enamine **14** (Scheme 6).

Apparently, the condensation proceeds through transition states 18a (major pathway) and 18b (minor pathway) to give two tricyclic imino complexes 19a,b. The C=N bond in these complexes is allylborated from the least hindered side, yielding a mixture of two aminoboranes 20a,b. Their alcoholysis results in the formation of tricyclic compounds 8a,b differing in the mutual arrangement of the allyl groups and in the position of the NH fragment in the polycycles (9 and 10, respectively).

Thus, in this work, allylboration of 1,2- and 1,4-dihydropyridines generated from pyridine by the action of butyllithium was carried out for the first time. The main products of this complex reaction are *trans*- and *cis*-2,6-diallylpiperidines, 2-allyl-1,2,3,6-tetrahydropyridine, and 4,10-diallyl-3,9-diazatricyclo[6.2.2.0^{2,7}]dodecane.

The data obtained are of fundamental importance for understanding the mechanism of the reductive monoand *trans*-diallylation of aromatic nitrogenous heterocycles by allylboranes.^{9,10} The unexpected formation of tricyclic compound **8a** with the fixed orientation of two allyl groups is yet another important result of this study.

Such heterocyclic systems are difficult to obtain by other methods.

Experimental

All manipulations with organoboron and organolithium compounds were carried out in an atmosphere of dry argon. Triallylborane¹¹ and *n*-butyllithium¹² were prepared according to known procedures.

 ^{1}H and ^{13}C NMR spectra were recorded on a Bruker AC-200P spectrometer. $^{1}H-^{1}H$ COSY spectra were recorded on a Bruker AMX-400 instrument; the chemical shifts are given on the δ scale and referenced to $SiMe_{4}.$ Mass spectra (EI) were obtained with the Kratos MS-30 spectrometer (70 eV). X-Ray diffraction analysis was carried out on a Siemens P3/PC diffractometer at $-120~^{\circ}C.$

Synthesis of 2-allyl-1,2,3,6-tetrahydropyridine (5), trans-2,6-diallylpiperidine (6), cis-2,6-diallylpiperidine (7), and tricyclic compounds (8a,b). A solution of pyridine (21.12 g, 21.5 mL, 267 mmol) in 20 mL of anhydrous hexane was placed in a three-necked flask equipped with a reflux condenser, a thermometer, a dropping funnel, and an inlet for argon. Addition of 1.78 M BuⁿLi (50 mL, 89 mmol) in hexane at -30 °C gave complex 3 as an orange precipitate. The reaction mixture was stirred at ~30-40 °C until the precipitate dissolved completely. Then pyridine (28.16 g, 28.63 mL, 356 mmol) was added, and the solution was kept without stirring at 50 °C (in a water bath) for 3 h and left overnight. The crystalline precipitate of complex 4 was separated by decantation and washed with anhydrous hexane (3×30 mL). After the addition of anhydrous THF (50 mL), complex 4 was cooled to −40 °C, and triallylborane (11.92 g, 15.5 mL, 89 mmol) was carefully added. The reaction mixture was stirred at 20 °C until the precipitate completely dissolved. Anhydrous MeOH (15 mL, 371 mmol) at -40 °C and then 20% NaOH (35 mL) at 10 °C were added, and the resulting mixture was refluxed for 2 h. The products were extracted with ether, and the organic extracts were dried with K₂CO₃. After the removal of the solvents at atmospheric pressure, the reaction mixture contained piperideine 5 (15%), trans-piperidine 6 (35%), cis-piperidine 7 (25%), tricyclic compound **8a** (20%), and its isomer **8b** (3%) (¹³C NMR data). Distillation gave three fractions: fraction 1, b.p. 70–90 °C (20 Torr); fraction 2, b.p. 50-90 °C (1 Torr), and fraction 3, b.p. 90-120 °C (1 Torr). Fraction 1 was purified by column chromatography on Al₂O₃ in hexane—ether (5:1) and distilled to give amine 5 (0.94 g, 8.6%), b.p. 68-69 °C (19 Torr). Column chromatography of fraction 2 on Al₂O₃ in hexane—ether (10:1) followed by distillation gave trans-amine 6 (1.95 g, 13.3%), b.p. 100-101 °C (19 Torr) and cis-amine 7 (1.37 g, 9.3%), b.p. 93-94 °C (19 Torr). Column chromatography of fraction 3 (Al₂O₃, ether) afforded tricyclic compound 8a (1.48 g, 6.8%), b.p. 107-109 °C (1 Torr), with an admixture of isomer

2-Allyl-1,2,3,6-tetrahydropyridine (5): $n_{\rm D}^{19}$ 1.4842. MS, m/z ($I_{\rm rel}$ (%)): 122 [M - H]⁺ (24%), 96 [M - C₂H₃]⁺ (48%), 82 [M - C₃H₅]⁺ (100%), 70 [C₄H₅]⁺ (29%). ¹H NMR (200 MHz, CDCl₃), δ : 1.70–2.35 (m, 5 H, C–CH₂–C, NH); 2.65–2.90 (m, 1 H, H(2)); 3.25–3.55 (m, 2 H, NCH₂); 4.95–5.25 (m, 2 H, CH₂=); 5.55–5.95 (m, 3 H, –CH=). ¹³C NMR (CDCl₃), δ : 31.3 (C(3)), 40.5 (C(2')), 44.8 (C(2)), 51.3 (C(6)), 116.7 (CH₂=), 124.5 (C(4)), 125.8 (C(5)), 134.7 (C(3')).

trans-2,6-Diallylpiperidine (6): n_D^{19} 1.4783. MS, m/z (I_{rel} (%)): 164 [M – H]⁺ (4%), 124 [M – C₃H₅]⁺ (100%),

82 [M $- C_3H_5 - C_3H_6$]⁺ (68%). ¹H NMR (200 MHz, CDCl₃), δ : 1.20-1.45 (m, 2 H, H(4)); 1.50-1.75 (m, 4 H, H(3), H(5)); 1.80-2.00 (br.s, 1 H, NH); 2.00-2.30 (m, 4 H, -CH₂- in All); 2.85-3.00 (m, 2 H, NCH); 4.90-5.20 (m, 4 H, CH₂-); 5.60-5.85 (m, 2 H, -CH-). ¹³C NMR (CDCl₃), δ : 19.3 (C(4)), 30.3 (C(3), C(5)), 38.4 (C(2'), C(6')), 49.4 (NCH), 116.6 (CH₂-), 135.4 (-CH-).

cis-2,6-Diallylpiperidine (7): $n_{\rm D}^{19}$ 1.4739. MS, m/z ($I_{\rm rel}$ (%)): 164 [M - H]⁺ (4%), 124 [M - C₃H₅]⁺ (100%), 82 [M - C₃H₅ - C₃H₆]⁺ (58%). ¹H NMR (200 MHz, CDCl₃), δ : 0.80-1.45 (m, 3 H, H(4), NH); 1.50-2.30 (m, 8 H, H(3), H(5), -CH₂- in All); 2.30-2.60 (m, 2 H, NCH); 4.90-5.25 (m, 4 H, CH₂=); 5.50-5.90 (m, 2 H, -CH=). ¹³C NMR (CDCl₃), δ : 24.3 (C(4)), 32.0 (C(3), C(5)), 41.2 (C(2'), C(6')), 55.6 (NCH), 116.7 (CH₂=), 135.0 (-CH=).

4,10-Diallyl-3,9-diazatricyclo[6.2.2.0^{2,7}]**dodecane (8a)**: $n_{\rm D}^{19}$ 1.5267. MS, m/z ($I_{\rm rel}$ (%)): 246 [M]+ (5%), 205 [M - C₃H₅]+ (26%), 124 [M/2 + H]+ (47%), 123 [M/2]+ (14%), 122 [M/2 - H]+ (52%), 82 [M/2 - C₃H₅]+ (100%). ¹H NMR (200 MHz, CDCl₃), 8: 1.05–2.45 (m, 16 H); 3.00–3.55 (m, 4 H, NCH); 4.95–5.30 (m, 4 H, CH₂=); 5.60–6.00 (m, 2 H, -CH=). ¹³C NMR (CDCl₃), 8: 18.9, 21.4 (C(6), C(11)), 28.1, 28.3 (C(5), C(12)), 33.7 (C(1)), 39.1 (C(7)), 40.8, 40.9 (-CH₂— in All), 48.1, 48.4, 48.9, 50.2 (NCH), 115.7, 116.3 (CH₂= in All), 136.0, 136.2 (CH₂= in All).

2-Allyl-1,2,3,6-tetrahydropyridine hydrochloride (5 · HCl) was prepared by the treatment of amine **5** with ethereal HCl, m.p. 142-143 °C (from ether—MeOH). Found (%): C, 60.09; H, 9.06; Cl, 22.54. C₈H₁₄ClN. Calculated (%): C, 60.18; H, 8.84; Cl, 22.21. ¹H NMR (400 MHz, CDCl₃), δ : 2.35 (m, 2 H, H(3)); 2.47 (m, 1 H, H_a(2')); 2.81 (m, 1 H, H_b(2')); 3.15 (m, 1 H, NCH); 3.66 (m, 2 H, NCH₂); 5.12 (m, 2 H, CH₂=); 5.57-5.74 (m, 2 H, H(4), -CH= in All); 5.79 (m, 1 H, H(5)); 9.64 (br.s, 1 H, NH); 9.76 (br.s, 1 H, NH). ¹³C NMR (CDCl₃), δ : 26.8 (C(3)), 36.6 (C(2')), 41.7 (C(2)), 52.1 (C(6)), 119.5, 119.7 (C(4), CH₂=), 125.1 (C(5)), 131.3 (C(3')).

trans-2,6-Diallylpiperidine hydrochloride (6 · HCl) was prepared analogously from amine 6, m.p. 190–192 °C (from ether—MeOH). Found (%): C, 65.17; H, 10.15; Cl, 17.66. $C_{11}H_{20}CIN$. Calculated (%): C, 65.49; H, 10.0; Cl, 17.57. ^{1}H NMR (200 MHz, CDCl₃), δ : 1.55–1.85 (m, 4 H, H_a (3), H_a (5), H(4)); 1.85–2.20 (m, 2 H, H_b (3), H_b (5)); 2.35–2.70 (m, 2 H, H_a (2'), H_a (6')); 2.75–3.10 (m, 2 H, H_b (2'), H_b (6')); 3.30–3.60 (m, 2 H, NCH); 5.10–5.45 (m, 4 H, CH₂=); 5.55–6.00 (m, 2 H, -CH=); 9.45 (br.s, 2 H, NH). ^{13}C NMR (CDCl₃), δ : 16.9 (C(4)), 25.4 (C(3), C(5)), 34.9 (C(2'), C(6')), 51.5 (NCH), 119.2 (CH₂=), 132.0 (-CH=).

cis-2,6-Diallylpiperidine hydrochloride (7 · HCl) was prepared analogously from amine 7, m.p. 247—248.5 °C (from ether—MeOH). Found (%): C, 65.18; H, 10.14; Cl, 17.44. C₁₁H₂₀ClN. Calculated (%): C, 65.49; H, 10.00; Cl, 17.57. ¹H NMR (200 MHz, CDCl₃), δ: 1.20—2.10 (m, 6 H, H(3), H(4), H(5)); 2.40—2.70 (m, 2 H, H_a(2'), H_a(6')); 2.80—3.20 (m, 4 H, H_b(2'), H_a(6'), NCH); 5.00—5.45 (m, 4 H, CH₂=); 5.55—5.95 (m, 2 H, —CH=). ¹³C NMR (CDCl₃), δ: 22.7 (C(4)), 27.9 (C(3), C(5)), 37.8 (C(2'), C(6')), 58.0 (NCH), 119.1 (CH₂=), 132.3 (—CH=).

4,10-Diallyl-3,9-diazatricyclo[6.2.2.0^{2,7}]dodecane picrate (8a · 2Pic). A solution of picric acid (0.39 g, 1.7 mmol) in EtOH was added to a solution of tricyclic compound **8a** in 10 mL of anhydrous hexane (0.21 g, 0.85 mmol). The resulting solution was stirred for 2 h and concentrated *in vacuo*. Crystallization from EtOH lasted for 10 days and gave crystals of

picrate **8a · 2Pic**, m.p. 175—185 °C (decomp.). Found (%): C, 47.87; H, 4.64. $C_{28}H_{32}N_8O_{14}$. Calculated (%): C, 47.73; H, 4.58. ¹H NMR (400 MHz, CD_3COCD_3), δ : 1.61 (m, 1 H, $H_a(12)$); 1.92 (m, 3 H); 2.22 (m, 3 H); 2.36 (m, 1 H, $H_a(11)$); 2.55—2.85 (m, 6 H); 3.67 (m, 1 H, H(2)); 3.94 (m, 1 H, H(8)); 4.22 (m, 2 H, H(4), H(10)); 4.98—5.24 (m, 4 H, CH_2 =); 5.66 (m, 1 H, -CH=); 5.80 (m, 1 H, -CH=); 8.74 (s, 4 H, CH_2 -CNO₂); 9.00 (br.s, 4 H, NH). ¹³C NMR (DMSO), δ : 16.6, 19.5 (C(6), C(11)), 21.7, 24.0 (C(5), C(12)), 29.3, 32.7 (C(1), C(7)), 34.6, 37.1 ($-CH_2$ — in All), 48.1, 48.3, 48.8, 50.1 (NCH), 119.2, 119.3 (CH_2 = in All), 124.8 (C_m), 125.4 (C_0), 132.6, 132.9 (-CH= in All), 141.8 (C_p), 161.0 (C-NO₂). The single crystal of picrate **8a · 2Pic** was obtained by crystallization from hexane—EtOH.

X-ray diffraction analysis of 8a · 2Pic: The crystals of **8a · 2Pic 0.5C₆H₁₄** are triclinic, M = 747.70, $[C_{31}H_{39}N_8O_{14}]$, space group $P\bar{1}$, Z = 2, at 153 K a = 8.306(2), b = 10.998(3), $c = 20.619(7) \text{ Å}, \ \alpha = 87.46(3)^{\circ}, \ \beta = 80.03(3)^{\circ}, \ \gamma = 69.93(2)^{\circ},$ $V = 1742.1(9) \text{ Å}^3$, $d_{\text{calc}} = 1.425 \text{ g cm}^{-3}$. The unit cell parameters and the intensities of 6831 reflections were obtained on a Siemens P3/PC diffractometer (molybdenum radiation, graphite monochromator, $\theta/2\theta$ scan mode, $2\theta > 54^{\circ}$). The equivalent reflections were averaged to give 6158 independent reflections. The structure was solved by the direct method and refined on F_{hkl}^2 by the full-matrix least-squares method in the anisotropic approximation for non-hydrogen atoms. The H atoms were located from the electron density difference maps and refined isotropically, except for the hydrogen atoms in the C_{14} = C_{15} allyl group, which were refined in the "riding" model with the thermal factors $U_{\rm eq}({\rm H})=1.2~U_{\rm eq}({\rm C})$. The final discrepancy factors are $R_1=0.0548$ (on $F_{\rm hkl}$ for 4808 reflections with $I>2\sigma(I)$), $R_{\rm w}2=0.1925$ (on $F^2_{\rm hkl}$ for all reflections included in the refinement of 611 independent parameters). All calculations were performed on an IBM-PC/AT with the SHELXTL PLUS program. 13 Complete tables of the bond lengths and angles, atomic coordinates, and thermal parameters have been deposited with the Cambridge Crystallographic Database.

trans-2,6-Diallyl-1,1-dimethylpiperidinium iodide (9). A mixture of amine **6** (0.4 g, 2.4 mmol), MeI (0.3 mL, 4.8 mmol), and K₂CO₃ (0.67 g, 4.8 mmol) in 5 mL of EtOH was refluxed for 5 h. The precipitate that formed was filtered off, and the filtrate was concentrated in vacuo. The products were extracted with chloroform, and the extract was filtered and concentrated in vacuo. Recrystallization from ethyl acetate—EtOH gave salt **9** (0.55 g, 71%), m.p. 195—196 °C. Found (%): C, 48.51; H, 7.51; I, 39.77; N, 4.01. C₁₃H₂₄IN. Calculated (%): C, 48.61; H, 7.53; I, 39.5; N, 4.36. ¹H NMR (200 MHz, CDCl₃), δ: 1.35–1.65 (m, 4 H, H(4), H_a(3), H_a(5)); 1.70–1.95 (m, 2 H, $H_b(3)$, $H_b(5)$); 2.15–2.35 (m, 2 H, $H_a(2')$, $H_a(6')$); 2.55-2.75 (m, 2 H, $H_b(2')$, $H_b(6')$); 3.17 (s, 6 H, Me); 3.60-3.80 (m, 2 H, H(2), H(6)); 4.85-5.1 (m, 4 H, CH₂=); 5.45-5.75 (m, 2 H, -CH=). ¹³C NMR (CDCl₃), δ: 15.3 (C(4)), 22.7 (C(3), C(5)), 31.6 (C(2'), C(6')), 48.9 (Me), 68.5 (C(2), C(6)), 119.1 (CH₂=), 131.5 (-CH=).

cis-2,6-Diallyl-1,1-dimethylpiperidinium iodide (10). By analogy with compound 9, salt 10 (0.36 g, 67%) was obtained from amine 7 (0.28 g, 1.7 mmol), MeI (0.21 mL, 3.4 mmol), and K_2CO_3 (0.47 g, 3.4 mmol) in 5 mL of EtOH. Iodide 10 is hygroscopic. ¹H NMR (200 MHz, CDCl₃), δ: 1.25–1.50 (m, 4 H, H(4), H_a(3), H_a(5)); 1.55–1.75 (m, 2 H, H_b(3), H_b(5)); 1.75–2.00 (m, 2 H, H_a(2'), H_a(6')); 2.45–2.70 (m, 5 H, H_b(2'), H_b(6'), Me); 3.12 (s, 3 H, Me); 3.55–3.80 (m, 2 H, H(2), H(6)); 4.75–5.05 (m, 4 H, CH₂=); 5.30–5.55 (m, 2 H, –CH=). ¹³C NMR (CDCl₃), δ: 20.4 (C(4)), 24.7 (C(3), C(5)),

33.3 (C(2'), C(6')), 37.7 (Me), 49.0 (Me), 72.0 (C(2), C(6)), 118.7 (CH₂=), 131.0 (—CH=).

The authors are grateful to I. D. Gridnev for recording the ¹H—¹H COSY spectra.

This work was financially supported by the Russian Foundation for Basic Research (Project Nos. 99-03-33125a and 00-03-32807) and by the Council on the RF President Grants and State Support of the Leading Scientific Schools (Project No. 00-15-97378).

References

- 1. K. Ziegler and H. Zeiser, Ber., 1930, 63, 1847.
- E. F. V. Scriven, in *Comprehensive Heterocyclic Chemistry*,
 Eds. A. R. Katritzky and W. Rees, Pergamon Press, Oxford,
 1984, 2, part 2A, 262.
- D. Barr, R. Snaith, R. E. Mulvey, and D. Reed, *Polyhedron*, 1988, 7, 665.
- 4. D. R. Armstrong, R. E. Mulvey, D. Barr, R. Snaith, and D. Reed, *J. Organomet. Chem.*, 1988, **313**, 191.

- 5. W. Clegg, L. Dunbar, L. Horsburgh, and R. E. Mulvey, Angew. Chem., Int. Ed. Engl., 1996, 35, 753.
- Yu. N. Bubnov, E. V. Klimkina, and A. V. Ignatenko, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 467 [*Russ. Chem. Bull.*, 1998, 47, 451 (Engl. Transl.)].
- Yu. N. Bubnov, E. A. Shagova, S. V. Evchenko, and A. V. Ignatenko, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 693 [*Russ. Chem. Bull.*, 1994, 43, 645 (Engl. Transl.)].
- 8. Y. Kawazoe, M. Tsuda, and M. Ohnbshi, *Chem. Pharm. Bull.*, 1967, **15**, 51, 214.
- Yu. N. Bubnov, Izv. Akad. Nauk, Ser. Khim., 1995, 1203
 [Russ. Chem. Bull., 1995, 44, 1156 (Engl. Transl.)].
- 10. Yu. N. Bubnov, Pure Appl. Chem., 1994, 66, 235.
- L. I. Zakharkin and V. I. Stanko, *Izv. Akad. Nauk SSSR*, Otd. Khim. Nauk, 1960, 1896 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1960 (Engl. Transl.)].
- 12. T. V. Talalaeva and K. A. Kocheshkov, in *Metody elementoorganicheskoi khimii* [Organometallic Methods], Eds. A. N. Nesmeyanov and K. A. Kocheshkov, Nauka, Moscow, 1971, 1, 107 (in Russian).
- W. Robinson and G. M. Sheldrick, Crystallographic Computing Techniques and New Technologies, Eds. N. W. Isaacs and M. R. Taylor, Oxford Univ. Press: Oxford, England, 1988, 366.

Received December 25, 2000